Toolpath generation for high density spatial fiber printing guided by principal stresses
Published in Composites Part B: Engineering, 2025
While multi-axis 3D printing can align continuous fibers along principal stresses in continuous fiber-reinforced thermoplastic (CFRTP) composites to enhance mechanical strength, existing methods have difficulty generating toolpaths with high fiber coverage. This is mainly due to the orientation consistency constraints imposed by vector-field-based methods and the turbulent stress fields around stress concentration regions. This paper addresses these challenges by introducing a 2-RoSy representation for computing the direction field, which is then converted into a periodic scalar field to generate partial iso-curves for fiber toolpaths with nearly equal hatching distance. To improve fiber coverage in stress-concentrated regions, such as around holes, we extend the quaternion-based method for curved slicing by incorporating winding compatibility considerations. Our proposed method can achieve toolpaths coverage between 87.5% and 90.6% by continuous fibers with 1.1 mm width. Specimens fabricated using our toolpaths show up to 84.6% improvement in failure load and 54.4% increase in stiffness when compared to the results obtained from multi-axis 3D printing with sparser fibers.
